
International Journal of Scientific & Engineering Research Volume 3, Issue 4, April-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Programmer Ranker Algorithm (PRA) for

Evaluating Programmer Effort in the Context of

Pair Programming
Manisha Giri, Meeta Dewangan

Abstract— Pair programming is a style of programming in which two programmers work side-by-side at one computer, continuously collaborating on the
same design, algorithm, code, or test. In industry, the practice of pair programming has been shown to improve product quality, improve team spirit, aid
in knowledge management, and reduce product risk. In education, pair programming also improves student morale, helps students to be more
successful, and improves student retention in an information technology major. Project efficiency of pairs in program design tasks is identified by using
pair programming concept. Pair programming involves two developers simultaneously collaborating with each other on the same programming task to
design and code a solution. Programming aptitude tests (PATs) have been shown to correlate with programming performance. In this paper we will
measure time productivity using pair programming, in two important ways: One is elapsed time to complete the task and the other is the total effort/time
of the programmers completing the task. Using Programmer Ranker Algorithm (PRA) we will generate pair and Rank will be provided to each pair of
Junior, Senior of industry. After providing rank the best pair is allocated to Embedded Software project type, Semi detached Software project type and
Organic Software project type respectively.

Index Terms: Pair programming, PAT, Collaborative programming, Team building, PRA.

—————————— � ——————————

1. INTRODUCTION

Software applications grow larger and more
complicated; these applications are then used in an infinite
myriad of user systems. Perhaps, then, it is best for the
complexity of these applications to be tackled by two
humans at a time. The idea of pair-programming, two
programmers working collaboratively on the same design,
algorithm, code, or test, has independently emerged several
times over the last decade. The practice of pair-
programming is gaining popularity, primarily with the rise
in the extreme Programming methodology [12]. The
concepts underlying Pair Programming (PP) are not new
[21], but PP itself has only recently attracted significant
attention and interest within the software industry and
academics.

Pair programming is a software practice that involves a
pair of programmers simultaneously collaborating with
each other on the same programming effort [12], [9], [16].
One programmer controls the keyboard and implements
the program. The other programmer watches, identifies
defects, and considers the direction of the work. Sitting side

by side at one computer, two colleagues collaborate on
solving the problem, designing the algorithm, and coding.

Pairs regularly switch the driver and navigator roles and

rotate their partners with other teams: This practice is
thought to facilitate skills transfer and job rotation [15].

Some take the view that pair Programming is neither as
economical nor as productive as individual programming
[4], [7]. Others argue that more studies of pair
programming productivity are needed [9], [7], [1], [18].
Some further explore pair programming such as side-by-
side programming [8] and a mixed software practice of pair
programming and individual programming [13], while
others propose more traditional alternatives to pair
programming suh as reviews [17] and mutual
programming [5], [4].

Several previous controlled experiments have validated
the following quantitative benefits of pair programming
over individual programming.

1. Significant improvements in functional correctness.
2. Various other measures of quality of the programs

being developed.
3. Reduced duration (a measure of time to market),

with only minor additional overhead in terms of total
programmer hours (a measure of cost or effort)

4. Reduced the elapsed time and produced better
software quality.

————————————————

• Manisha Giri is currently pursuing masters degree program in computer
science and engineering from Chhatrapati Shivaji Institute of Technology,
Dueg (C.G.),India E-mail: manishagiri1@gmail.com

• Meeta Dewangan is working as an assistant professor in Deapartment of
Computer Science Engineering Chhatrapati Shivaji Institute of
Technology, Durg India, E-mail:meetadewangan@csitdurg.in

International Journal of Scientific & Engineering Research Volume 3, Issue 4, April-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

One exception is an experiment that showed no positive
effects of PP with respect to time taken no improved
functional correctness of the software product compared
with individual development [7], which essentially doubled
the cost of development. However, the results of that
experiment also suggested that the standard deviation of
the development times and program sizes of the PP group
was lower, suggesting that PP might be more predictable
than individual programming.

Therefore, in controlled experiments where design
related tasks were intermingled with coding, elapsed time
was less and the quality was better for pairs. Another
unique aspect of PP included the first ever assessment of
the moderating effects of system complexity and
programmer expertise.

Earlier studies reported that pair programming took
more man hours than individual programming. One
limitation of the previous experiment that was addressed to
some degree in this experiment was that the task was much
more complex/novel for the subjects.

In this project we will measure time productivity using

pair programming, in two important ways: One is lapsed
time to complete the task and the other is the total
effort/time of the programmers completing the task. Using
Programmer Ranker Algorithm (PRA) we will generate
pair and Rank will be provided to each pair of Junior,
Senior of industry. After providing rank the best pair is
allocated to Embedded Software project type, Semi
detached Software project type and Organic Software
project type respectively.

The remainder of this paper is organized as follows:
Section 2 provides a brief history of the use of pair
programming. Section 3 identifies the problem in the
existing system. Section 4 explains our approach of pair
programming that is Programmer Ranker Algorithm(PRA).
Section 5 provides the pair programming results. The final
section provides concluding remarks and points some
possible directions for future research.

2. BACKGROUND

Since as early as 1991, cognitive researchers have been

interested in how two programmers collaborate on the
same task [19]. They reported that two programmers in a
pair could generate more diverse plans and explore a larger
number of alternatives than an individual programmer. In
a faithful reenactment of a pair programming episode by
two pair programming practitioners reported in [20], the
pair spent more time talking, casually reasoning about
requirements realization, data modeling, data structures,
and semantic analysis, than discussing lexical analysis,
syntax analysis, libraries of a computer language, and the
integrated development environment (IDE). This suggests
that pair programming may have benefits in situations such
as design-related tasks, where alternative exploration can
improve the solution. Some studies on pair programming

attempted to simulate complex real situations so as to
provide a rich picture of the behaviors inherent in pair
programming. However, these programming tasks could
not be done at a single time and the experimental task had
to be split [16], [6]. The length of time between two
experimental sessions can variably affect results [16], [6].
Oftentimes, like the real world requirements, descriptive
programming tasks, instead of symbolic ones, were given
to participants. As a result, some individuals
misunderstood the problem, even at the beginning of the
experiment [16], [6]. These studies have provided valuable
information related to pair programming. However,
because they were not strictly controlled experiments, it is
difficult to sort out influences on the results.

3. PROBLEM IDENTIFICATION

Programming teams [3] in industry in which pair
programming was practices report significantly improved
team work among the members. If the pair can work
together, then they learn ways to communicate more easily
and they communicate more often. In many cases, these
industrial teams continually rotate partners; two people do
not work together for more than a short increment. This
increases the overall information flow and team jelling
farther.

Analysis related to a multivariate model[23] that
expresses Individual Performance as a predictor of Pair
Performance. Moreover, Personality was included as a
predictor of Individual Performance as shown in fig 1.

Fig. 1. Multivariate conceptual model(Individual
Performance vs Pair Performance).

Earlier studies reported that pair programming took
more man hours than individual programming. One
limitation of the previous experiment that was addressed to

International Journal of Scientific & Engineering Research Volume 3, Issue 4, April-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

some degree in this experiment was that the task was much
more complex/novel for the subjects. As we know there are
three types of Software projects, Embedded Software
project type, Semi detached Software project type and
Organic Software project required different knowledge and
skill set so Using Programmer Ranker Algorithm (PRA) we
will generate pair and Rank will be provided to each pair of
Junior, Senior of industry. After providing rank the best
pair is allocated to Embedded Software project type, Semi
detached Software project type and Organic Software
project type respectively.

4. OUR APPROACH

In pair programming, time productivity [24] can be
measured in two important ways: One is elapsed time to
complete the task and the other is the total effort/time of
the programmers completing the task.
The effort equation is as follows :-

E = a_b * (KLOC) b_b

D = c_b * (E) d_b

Where E – effort applied by per person per
month,

 D – Development time in consecutive months,
KLOC – estimated thousands of lines of code delivered

for the project.
 The coefficients a_b, c_b, and the coefficients b_b, d_b

are given in the Table:

Table 1: Coefficients & exponents used in the Basic
COCOMO Model

Software

Project Type
a_b b_b c_b d_b

Organic 2.4 1.1 2.5 0.4

Semi-detached 3 1.1 2.5 0.4

Embedded 3.6 1.2 2.5 0.3

From above table we can say that Embedded Software
project type require more effort as compare to Semi-
detached and Organic. Hence Embedded Software project
should be allotted to high ranked pair.

4.1 PROGRAMMING APTITUDE TESTS(PATS)

Programming Aptitude Tests (PATs) can be correlated with
programming performance. Aptitude tests in problem

solving and algorithm design can be used to test the effect
of pairs in these tasks. The results of PATs can be used to
generate pairs. PAT score will calibrate as follows:-

Time productivity can be measured in two important
ways: One is elapsed time to complete the task and the
other is the total effort/time of the programmers
completing the task. Both important measurements of time
can be incorporated in a single measurement, that is, the
Relative Effort Afforded by Pairs (REAP)[14]:-

REAP= finish_time_of_pair× 2(finish_time_of_individual)

Finish_time_ of_individual

There are five cases to consider with REAP:
1. REAP < 0 When REAP is negative, the total time

of pair programmers is less than the time of the individual
programmer.

2. REAP 0 If REAP is zero, this is a break-even
point, where the total time of pair programming is the same
as individual programming.

3. REAP is between 0 and 100 When REAP is greater
than zero but is less than 100 percent, pairs require more
total man hours to complete the task but are faster than
individual programmers.

4. REAP 100 If REAP is around 100 percent, the

elapsed time for pair programmers is almost the same time
as in the individual programmer.

5. REAP > 100 When REAP is greater than 100

percent, then the elapsed time for pair programming is
longer than the time for an individual programmer.

4.2 PROGRAMMER RANKER ALGORITHM(PRA)

Procedure Gen_Pair()
//indiTime -> Finish Time of Individual
 //p1Time -> Pair-I Finish Time
//p2Time -> Pair-II Finish Time
//p3Time = -> Pair-III Finish Time

 REAP1 = (((p1Time * 2) - indiTime) / indiTime) * 100;
 REAP2 = (((p2Time * 2) - indiTime) / indiTime) * 100;
 REAP3 = (((p3Time * 2) - indiTime) / indiTime) * 100;

 if (REAP1 < REAP2)
 {
 if (REAP1 < REAP3)
 {
 "The Pair One is Best compare to the others";
 }
 else
 {
 "The Pair three is Best compare to the others";

International Journal of Scientific & Engineering Research Volume
ISSN 2229-5518

 }
 }
 else if (REAP1 > REAP2)
 {
 if (REAP2 < REAP3)
 {
 "The Pair two is Best compare to the others";
 }
 else
 {
 "The Pair three is Best compare to the others";
 }
 }

End Gen_Pair

Pair will be generated among Junior and Senior Staffs of

industry. Now our next procedure will evaluate correct pair
among different pairs generated using Gen_Pair procedure.

 Junior Staff (Individual)

 Senior Staff (Individual)

Pair of Junior and Senior Staff of Industry(Pairs)

Engineering Research Volume 3, Issue 4, April-2012

IJSER © 2012

http://www.ijser.org

"The Pair two is Best compare to the others";

"The Pair three is Best compare to the others";

will be generated among Junior and Senior Staffs of
industry. Now our next procedure will evaluate correct pair
among different pairs generated using Gen_Pair procedure.

(Pairs)

Procedure Pair_Rank()

// p1Time -> Pair-I Finish Time
// p2Time -> Pair-II Finish Time
// p3Time -> Pair-III Finish Time
.
.
.
.
// pnTime -> Pair-n Finish Time

//T= /n
//n -> Total Number of Pair

for(i=1; i<=n ; i++)
{
 T=T+piTime
}
T=T/n
//pi[n] -> To Store piTime

//Sorting pi
SORT_PAIR(A, p, r)
 if p < r

 then q ← PARTITION(A, p, r)
 SORT_PAIR(A, p, q - 1)
 SORT_PAIR(A, q + 1, r)

End SORT_PAIR

PARTITION(A, p, r)

 x ← A[r]
 i ← p - 1
 for j ← p to r - 1

 do if A[j] ≤ x
 then i ← i + 1
 exchange A[i]
 exchange A[i + 1]

 return i + 1
end PARTITION
End Pair_Rank

 4

I Finish Time
II Finish Time
III Finish Time

n Finish Time

← PARTITION(A, p, r)
1)

SORT_PAIR(A, q + 1, r)

exchange A[i] ↔ A[j]
exchange A[i + 1] ↔ A[r]

International Journal of Scientific & Engineering Research Volume
ISSN 2229-5518

5. PAIR PROGRAMMING RESULTS

Anecdotal and empirical evidence reported in the
suggest several organizational and personal benefits of PP
over individual programming, such as reduced time to
market,reduced development costs,improved quality of the
software,reduced costs of training new personnel, and
enhanced trust,motivation, and information and
knowledge transfer among developers.

Fig 2 provides the comparison of pair
programmers and individuals. It shows that the effort spent
to develop the project can be reduced by pair
programming. Programmer Ranker Algorithm(PRA) is
used to generate pairs and the pairs generated by PRA can
significantly reduce the Project development time and cost.

Fig 2. Comparison of pair programmers and individuals

6. CONCLUSION

The primary contribution of this study is to
overview of Pair Programming and to demonstrate the use
of Programming Aptitude Test in the aspect
generation or team building that facilitates to make pair
newly hired programmers in an industry.

In our study, we have pointed out the use of PAT as a
measurement of productivity and to evaluate the
performance of individuals and pairs in order to generate
the correct pairs. Our study showed that junior individuals
may lack the necessary skills to perform tasks with
acceptable quality, in particular, on more complex systems.
Junior pair programmers achieved a significant increase in
correctness compared with the individuals and achieved
approximately the same degree of correctness as senior
individuals. Software testing is often viewed as requiring
less skill than initial system development and is thus often
allocated to the more junior staff. Our study concludes that

0%

20%

40%

60%

80%

100%

120%

140%

Effort Cost Time

Engineering Research Volume 3, Issue 4, April-2012

IJSER © 2012

http://www.ijser.org

ESULTS

Anecdotal and empirical evidence reported in the literature
suggest several organizational and personal benefits of PP
over individual programming, such as reduced time to
market,reduced development costs,improved quality of the
software,reduced costs of training new personnel, and

ion, and information and

Fig 2 provides the comparison of pair
programmers and individuals. It shows that the effort spent
to develop the project can be reduced by pair
programming. Programmer Ranker Algorithm(PRA) is
used to generate pairs and the pairs generated by PRA can
significantly reduce the Project development time and cost.

Fig 2. Comparison of pair programmers and individuals

The primary contribution of this study is to provide an
overview of Pair Programming and to demonstrate the use

aspect of pair
to make pair of

use of PAT as a
f productivity and to evaluate the

s in order to generate
Our study showed that junior individuals

may lack the necessary skills to perform tasks with
in particular, on more complex systems.

Junior pair programmers achieved a significant increase in
correctness compared with the individuals and achieved
approximately the same degree of correctness as senior

Software testing is often viewed as requiring
less skill than initial system development and is thus often

concludes that,

if juniors are assigned to complex tasks, they should
perform the tasks in pairs.

Programmer Ranker Algorithm (PRA) will generate pair
and Rank will be provided to each pair of Junior, Senior of
industry. After providing rank the best pair is allocated to
Embedded Software project type, Semi detached Software
project type and Organic Softwar
This will reduce the time and effort requires developing the
Embedded Software project which will eventually reduce
overall cost of software.

REFERENCES

[1] A. Parrish, R. Smith, D. Hale, and J. Hale, “A Field Study of

Developer Pairs: Productivity Impacts and Implications,”

IEEE Software, vol. 21, no. 5,

[2] D.B. Mayer and A.W. Stalnaker, “Selection and Evaluation of

Computer Personnel: The Research History of SIG/CPR,”

Proc. 23rd ACM Nat’l Conf., pp. 65

[3] F. P. J. Brooks, The Mythical Man

Publishing Company,1975.

[4] G. Keefer, “Extreme Programming Considered Harmful for

Reliable Software,” Proc. Sixth Conf. Quality Eng. in

Software Technology, pp. 129

[5] G. Keefer, “Mutual Programming: A Practice to Improve

Software Development Productivity,” Proc. Int’l Conf.

Practical Software Quality and Testing ’03, 2003.

[6] H. Hulkko and P. Abrahamsson, “A Multiple Case Study on

the Impact of Pair Programming on Product Quality,”

27th Int’l Conf. Software Eng., pp. 495

[7] J. Nawrocki and A. Wojciechowski, “Experimental

Evaluation of Pair Programming,” Proc. 12th European

Software Control and Metrics Co

[8] J. Nawrocki, M. Jasin˜ ski, L. Olek,

Programming versus Side

12th European Conf. Software Process Improve

38, Nov. 2005.

[9] J. Nosek, “The Case for Collaborative Programming,”

Comm. ACM, vol. 41, no. 3, pp. 105

[10] J.M. Wolfe, “A New Look at Programming Aptitudes,”

Business Automation, vol. 17, pp. 36

[11] J.M. Wolfe, “Perspectives on Testing for Programming

Aptitude,” Proc. 25th ACM/CSC

277, 1971.

[12] K. Beck, Extreme Programming Explained: Embrace Ch

Reading, Massachusetts: Addison

[13] K.M. Lui and K.C.C. Chan, “Software Process Fusion:

Uniting Pair Programming and Individual Programming

Processes,” Proc. Int’l Software Process Workshop and Int’l

Workshop Software Process Simulation an

115-123, 2006.

[14] Kim Man Lui, Keith C.C. Chan, and John Teofil Nosek “The

Effect of Pairs in Program Design Tasks” IEEE transactions

on software engineering, VOL

[15] L. Williams and R.R. Kessler, Pair Programming

Individuals

Pairs

 5

if juniors are assigned to complex tasks, they should

ammer Ranker Algorithm (PRA) will generate pair
and Rank will be provided to each pair of Junior, Senior of
industry. After providing rank the best pair is allocated to
Embedded Software project type, Semi detached Software
project type and Organic Software project type respectively.
This will reduce the time and effort requires developing the
Embedded Software project which will eventually reduce

Parrish, R. Smith, D. Hale, and J. Hale, “A Field Study of

Pairs: Productivity Impacts and Implications,”

IEEE Software, vol. 21, no. 5, pp. 76-79, Sept./Oct. 2004.

D.B. Mayer and A.W. Stalnaker, “Selection and Evaluation of

Computer Personnel: The Research History of SIG/CPR,”

l Conf., pp. 657-670, 1968.

F. P. J. Brooks, The Mythical Man-Moth: Addison-Wesley

G. Keefer, “Extreme Programming Considered Harmful for

Reliable Software,” Proc. Sixth Conf. Quality Eng. in

chnology, pp. 129-141, 2002.

“Mutual Programming: A Practice to Improve

Software Development Productivity,” Proc. Int’l Conf.

lity and Testing ’03, 2003.

H. Hulkko and P. Abrahamsson, “A Multiple Case Study on

the Impact of Pair Programming on Product Quality,” Proc.

re Eng., pp. 495-504, 2005.

J. Nawrocki and A. Wojciechowski, “Experimental

Evaluation of Pair Programming,” Proc. 12th European

Software Control and Metrics Conf., pp. 269-276, Apr. 2001.

J. Nawrocki, M. Jasin˜ ski, L. Olek, and B. Lange, “Pair

Programming versus Side-by-Side Programming,” Proc.

12th European Conf. Software Process Improvement, pp. 28-

J. Nosek, “The Case for Collaborative Programming,”

1, no. 3, pp. 105-108, 1998.

“A New Look at Programming Aptitudes,”

, vol. 17, pp. 36-45, 1970.

J.M. Wolfe, “Perspectives on Testing for Programming

Aptitude,” Proc. 25th ACM/CSC-ER Ann. Conf., pp. 268-

K. Beck, Extreme Programming Explained: Embrace Change.

Reading, Massachusetts: Addison-Wesley, 2000.

K.M. Lui and K.C.C. Chan, “Software Process Fusion:

Uniting Pair Programming and Individual Programming

Processes,” Proc. Int’l Software Process Workshop and Int’l

Workshop Software Process Simulation and Modeling, pp.

Kim Man Lui, Keith C.C. Chan, and John Teofil Nosek “The

Effect of Pairs in Program Design Tasks” IEEE transactions

on software engineering, VOL. 34, NO. 2, march/april 2008

L. Williams and R.R. Kessler, Pair Programming

International Journal of Scientific & Engineering Research Volume 3, Issue 4, April-2012 6
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Illuminated. Addison-Wesley, 2003.

[16] L. Williams, R.R. Kessler, W. Cunningham, and R. Jeffries,

“Strengthening the Case for Pair Programming,” IEEE

Software, vol. 17, no. 4, pp. 19-25, July/Aug. 2000.

[17] M. Ciolkowski and M. Schlemmer, “Experiences with a Case

Study on Pair Programming,” Proc. First Int’l Workshop

Empirical Studies in Software Eng., 2002.

[18] M.M. Mu¨ ller, “Two Controlled Experiments Concerning

the Comparison of Pair Programming to Peer Review,” J.

Systems and Software, vol. 78, no. 2, pp. 166-179, 2005.

[19] N. Flor and E. Hutcheins, “Analyzing Distributed Cognition

in Software Teams: A Case Study of Team Programming

During Perfective Software Maintenance,” Proc. Fourth Ann.

Workshop Empirical Studies of Programmers, 1991.

[20] R.M. Martin, Agile Software Development: Principles,

Patterns and Process of Software Development. Prentice

Hall, 2001.

[21] T.D. Cook and D.T. Campbell, Quasi-Experimentation—

Design & Analysis Issues for Field Settings. Houghton

Mifflin, 1979.

[22] W.J. MeNamara and J.L. Hughes, “A Review of Research on

the Selection of Computer Programmers,” Personnel

Psychology, vol. 14, pp. 39-51, 1961.

[23] Jo E. Hannay, Erik Arisholm,Harald Engvik, and Dag I.K.

Sjøberg,"Effects of Personality on Pair Programming" IEEE

Transactions on software engineering, vol. 36, no. 1,

january/february 2010.

[24] Nancy Merlo – Schett "COCOMO Model" Seminar on
Software Cost Estimation Requirements Engineering
Research Group Department of Computer Science
University of Zurich, Switzerland, 2002 / 2003

